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ABSTRACT: Satellite-tracked in situ surface drifters, providing measurements of near-surface ocean quantities, have
become increasingly prevalent in the global ocean observation system. However, the position data from these instruments
are typically not leveraged in operational ocean data assimilation (DA) systems. In this work, the impact of an augmented-
state Lagrangian data assimilation (LaDA) method using the local ensemble Kalman transform filter is investigated within
a realistic regional ocean DA system. Direct positioning data of surface drifters released by the Consortium for Advanced
Research on Transport of Hydrocarbon in the Environment during the summer 2012 Grand Lagrangian Deployment
Experiment are assimilated using a Gulf of Mexico (GoM) configuration of the Modular Ocean Model, version 6, of
the Geophysical Fluid Dynamics Laboratory. Multiple cases are tested using both 1/48 eddy-permitting and 1/128 eddy-
resolving model resolutions: 1) a free running model simulation, 2) a conventional assimilation of temperature and salinity
profile observations, 3) an assimilation of profiles and Lagrangian surface drifter positions, and 4) an assimilation of the
profiles and derived Eulerian velocities. LaDA generally produces more accurate estimates of all fields compared to the
assimilation of derived Eulerian velocities, with estimates of surface currents notably improving, when transitioning to 1/
128 model resolution. In particular, LaDA produces the most accurate estimates of sea surface velocities under tropical
cyclone conditions when Hurricane Isaac (2012) impacted the GoM. Further experiments applying a vertical localization
while assimilating surface drifter positions improve the estimates of temperature and salinity below the mixed layer depth.
Cases including the surface drifter positions in the DA show better Lagrangian predictability than the conventional DA.

KEYWORDS: Lagrangian circulation/transport; In situ oceanic observations; Kalman filters; Ensembles; Data
assimilation; Nonlinear models

1. Introduction

Wind-driven surface ocean currents play a key role in stor-
ing and transferring heat energy throughout the Earth system.
Due to the significant contribution of surface ocean currents
to the characterization of Earth’s climate (WMO 2015), ocean
surface currents have been included in the list of essential cli-
mate variables (Bojinski et al. 2014). Improving the represen-
tation of surface currents has also been shown to improve
estimation of hurricane intensity (Li and Toumi 2018; Zhang
and Emanuel 2018; Chen and Zhang 2019; Phillipson et al.
2021). Knowledge of ocean surface velocities can benefit
other applications such as optimized route planning for mari-
time navigation, tracking pollutants or oil spills like those pro-
duced by Deepwater Horizon, or assisting survival and rescue
teams.

Ocean data assimilation (DA) typically produces physical
state estimates by combining a numerical forecast model with
sparse observations. However, producing accurate estimates
of ocean velocities using DA has been a persistent challenge
due to a lack of direct measurements for ocean surface cur-
rents on synoptic scales (Penny et al. 2015). Increasing model
resolution exacerbates this issue, as even more observations

are needed to constrain the smaller scales that are resolved.
In recent years, the technologies to observe ocean currents
have progressed significantly. Examples include advances in
satellite-based altimetry (Scharroo et al. 2013), enhanced
mooring arrays (Bailey et al. 2019), and high-frequency (HF)
radar (Capodici et al. 2019). In this study, we emphasize the
utilization of surface Lagrangian drifters. Surface drifters pro-
vide the most feasible means of obtaining spatially distributed
simultaneous measurements of the structure of the ocean’s
surface velocity field on length scales from 100 m to 10 km
(Poje et al. 2014; Haza et al. 2014; Mohamad and Majda 2020;
Pearson et al. 2019).

A variety of methods have been applied to improve ocean
current estimation by assimilating surface drifter measure-
ments under realistic scenarios for regional ocean scales
(Isern-Fontanet et al. 2017). Three primary strategies have
been used to assimilate surface drifters using the Lagrangian
nature of the drifter device (i.e., consisting of position-time
measurements). The first, denoted as the Eulerian approach
(or “pseudo-Lagrangian”), converts a series of Lagrangian
positions into Eulerian velocity by determining the change in
drifter position over some time scale (Hernandez et al. 1995;
Ishikawa et al. 1996; Toner et al. 2001a,b). This approach, in
combination with assimilating temperature and salinity obser-
vations from other instruments, is straightforward to imple-
ment in existing operational ocean DA frameworks, and hasCorresponding author: Luyu Sun, lysun@umd.edu
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been applied in many regions, such as the Gulf of Mexico
(Jacobs et al. 2014; Carrier et al. 2014, 2016; Muscarella et al.
2015; Coelho et al. 2015), the Indian Ocean (Santoki et al.
2012, 2013) and the Angola Basin (Phillipson and Toumi
2017). All these studies have shown significant improvements
in estimating ocean currents after including the assimilation
of the “proxy” surface velocity data measured from drifter
devices. The second approach directly assimilates the Lagrang-
ian data by minimizing the distance between the observed tra-
jectories and the synthetic trajectories generated by the model
velocity field (Molcard et al. 2003, 2005; Özgökmen et al. 2003;
Taillandier et al. 2006; Nodet 2006; Nilsson et al. 2012). For
instance, the Lagrangian variational analysis (LAVA) method
proposed by Taillandier et al. (2006) has been successfully
used by Berta et al. (2015) to restore ageostrophic contribu-
tions beyond the simple Ekman model. The third approach is
fully Lagrangian, in which the system state vector is extended
by including the original fluid states and the augmented drifter
state variables (Ide et al. 2002; Kuznetsov et al. 2003; Sun and
Penny 2019). The third approach has not yet been applied in a
realistic setting, and this will be our focus here.

Different DA methods have been proposed within the
framework of augmented-state Lagrangian DA (LaDA) and
all of them have shown promising results using the identical
twin approach of observing system simulation experiments
(OSSEs). Previous attempts within this LaDA category were
designed based on the Kalman filter. For example, Ide et al.
(2002) and Kuznetsov et al. (2003) examined the extended
Kalman filter (Jazwinski 1970) for applications of the aug-
mented-state LaDAwithin point-vortex systems. Salman et al.
(2006), Apte et al. (2008), and Vernieres et al. (2011)
extended the examination of this LaDA approach using the
ensemble Kalman filter (EnKF; Evensen 2004) to more realis-
tic ocean systems, such as a linear shallow water system and a
multilayer reduced gravity model of the Gulf of Mexico.
These methods were applied with high-dimensional model
states, though the approach failed to capture dynamics with
the high-order nonlinearity due to the resulting non-Gaussian
distribution of error (Apte et al. 2008; Apte and Jones 2013).
An alternative assimilation method that could be used in the
presence of this nonlinearity is the particle filter (PF) (Spiller
et al. 2008; Salman et al. 2008), but the PF does not scale well
to high dimensions (Snyder et al. 2008). Slivinski et al. (2015)
designed a hybrid approach combining both of the EnKF and
PF to attempt to solve the problems of nonlinearity and high-
dimensionality simultaneously by updating the flow states
using an EnKF and the drifter states using a PF. This hybrid
approach was able to alleviate the nonlinearity issue gener-
ated by the evolution of the Lagrangian paths by assimilating
a single drifter in a linear shallow water model. Sun and
Penny (2019) proposed a localized augment-state LaDA
method based on the local ensemble transform Kalman filter
(LETKF; Hunt et al. 2007). This method, denoted as LETKF-
LaDA hereinafter, enabled the possibility to assimilate a large
number of drifters into an advanced ocean forecast model
while reducing the nonlinear impact by applying localization
to both the flow states and the drifter positions. The “identical
twin” approach of OSSEs were applied assessing the impact

of LETKF-LaDA and the results have shown that LaDA was
able to outperform the conventional assimilation of surface in
situ temperature and salinity measurements. The improve-
ments were seen not only in the surface state estimate, but
also throughout the ocean column to the deeper ocean.

This study extends the work of Sun and Penny (2019) and
examines the LETKF-LaDA in a realistic scenario, which is a
first validation of augmented-state LaDA using historical data
and a realistic numerical ocean model. This is also the first
attempt in a realistic application to combine the augmented-
state LaDA of drifter measurements with conventional assim-
ilation of in situ profile measurements of temperature and
salinity. We focus on the Gulf of Mexico (GoM), in which the
ocean circulation, such as the Loop Current system, plays a
crucial role in many critical weather events such as severe
tropical storms and tropical cyclones. Carrier et al. (2014) per-
formed a similar study using drifter measurements and they
have shown that adding the drifter observations in the ocean
DA greatly improves the characterization of the circulation.
Instead of assimilating the direct drifter positions from the
GLAD dataset, they assimilated the approximated Eulerian
velocity together with profile temperature and salinity mea-
surement, but further included remotely sensed observations
(e.g., satellite SST), which occupied a vast majority of the
total observations. Other differences include the observation
window and DA method, which is 6 h using LETKF-LaDA
for both the observation and DA windows in our work, com-
pared to 1 h using 4D-Var with a 48-h DA window in the
work of Carrier et al. (2014).

The remainder is organized as follows: section 2 reviews the
augmented-state LaDA approach and introduces the corre-
sponding analysis system; the regional forecast model and
observation database are discussed in section 3; the design of
experiments is described in section 4; section 5 presents the
results of the aforementioned experiments; and section 6 sum-
marizes our conclusions and directions for future research.

2. Analysis system including Lagrangian data
assimilation (LaDA)

a. Augmented-state LaDA

The augmented-state approach (Ide et al. 2002) extends the
state of the system with additional information carried by
Lagrangian tracers:

x � xF
xD

[ ]
, (1)

where xD contains direct measurements from drifter devices,
such as longitude, latitude, depth, temperature, and salinity, if
the corresponding measurement sensors are attached. The
forecast fluid model state vector xF has N components con-
taining gridded ocean states, such as temperature, salinity,
and current velocity fields. In this study, we only consider the
scenario of drifter data consisting of positioning measure-
ments of longitude and latitude, and assume that the drifters
maintain a constant depth. In this case, if there are ND fore-
casting drifters then xD is a state vector of 2ND components,
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with each drifter containing two measurements: longitude and
latitude. The drifter advection equation is then added to the
original fluid dynamical system as

dxfF
dt

�MF x
f
F , t

( )
dxfD
dt

�MD x
f
F , x

f
D, t

( ) ,
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ (2)

where MF is the numerical ocean model. The term MD is
the extended drifter simulation dynamics operator, such as
the offline operator OceanParcels, v2.0.0 (Delandmeter and
van Sebille 2019) or the online drifter modules in advanced
ocean models such as the Hybrid Coordinate Ocean Model
(HYCOM; Wallcraft et al. 2009) and Modular Ocean
Model, version 6 (MOM6; NOAA-GFDL 2021).

To assimilate the drifter measurements simultaneously with
conventional temperature and salinity (T, S) profile observa-
tions, we formulate the observation operator as

yoT,S
yoD

[ ]
� HF 0

0 HD

[ ]
xtF
xtD

[ ]
1 « � Hxt 1 «, (3)

where

H � HF 0
0 HD

[ ]
and « ∼ N 0, R( ) · (4)

Suppose there are L profile measurements and LD drifter
positions observed, then the temperature and salinity profile
observations yoT,S is an L-dimensional vector and the longitude
and latitude measurements of drifters yoD a 2LD-dimensional
vector. A linear observation operator assimilating drifter posi-
tions HD is 2LD 3 2ND with diagonal entries either 1 or 0. If the
ID number of the simulated drifter coincides with the observed
drifter ID number, then the associated entries are designated as
1, otherwise are 0. Matrix HF is L 3 N, a standard linear obser-
vation operator assimilating in situ temperature and salinity
observations mapping from gridded model space to observation
space. Parameter « is a Gaussian observation error, with
observation error covariance R. The augmented-state LaDA
approach provides an estimator x = (xFxD)

T given the observa-
tions yo. With the Gaussian assumption, the Kalman filter based
methods attempt to provide the best linear unbiased estimator
by taking advantage of the estimated observation error covari-
ance matrix R and the estimated background error covariance
matrix of the combined fluid and drifter states defined as

P � PFF PFD

PT
FD PDD

[ ]
, (5)

where PFF and PDD define the background error covariance
matrices of the fluid state vector and the drifters state vector,
respectively. The matrix PFD is denoted as the cross-covariance
matrix of the background errors for the fluid and drifters state
vectors. In particular, the prior error covariance matrix of an
EnKF is determined by the sample error covariance matrix
from ensemble forecast perturbations around the ensemble
mean at each DA cycle.

b. Local ensemble transform Kalman filter (LETKF)

Extending the approach based on the works by Bishop et al.
(2001) and Hamill et al. (2001), the local ensemble transform
Kalman filter (LETKF) proposed by Hunt et al. (2007) is a
type of ensemble square root filter that uses the localization
approach of Ott et al. (2004). The linear transform within the
LETKF updates the analysis ensemble deterministically by
shifting different ensemble members from the prior distribu-
tion to the posterior distribution. The LETKF is scaled for
realistic systems by applying a combination of localization
and parallelization, through performing the calculation of the
analysis independently at each grid point. Localization is one
of the primary tools for scaling DA methods for use with spa-
tially extended high-dimensional nonlinear systems. There are
generally two types of localization used by DA methods: obser-
vation space (R-localization), and model space (B-localization)
(Greybush et al. 2011). LETKF employs R-localization by
selecting and weighting local observations in a prescribed region
around each grid point while excluding observations outside
this region. This type of localization permits the analysis to be
formed from an effectively larger dimensional space than could
be determined by forming the transform operator directly from
a linear combination of global perturbations, though each local-
ized solution is still determined from a linear subspace that is
limited by the ensemble size.

The LETKF-LaDA (Sun and Penny 2019) is an augmented-
state LaDA using LETKF, which allows for the assimilation of
multiple drifter measurements. To assimilate the conventional
in situ profile observations together with the Lagrangian
observations, the definition of the localization region remains
the same as the original LETKF algorithm. However, the
observation operator defined for each localization region must
be modified according to the formula in Eq. (3), which con-
tains the localized linear observation operator for both the
temperature and salinity profiles (i.e., HF[l]) and the drifter
measurements (i.e., HD[l]), where the subscript “[l]” indicates a
localized component. This modification allows for defining
parameters such as the localized observation error covariance
matrix R[l] and the localized forecast perturbation matrix
Y
f
l[ ] � H l[ ]X

f
l[ ] within the observation space. The localized

observation vector yol[ ] and the localized forecast ensemble
mean y

f
l[ ] are also formed, and can contain a mixture of both

conventional profile and drifter components. The localized
analysis error covariance and weight matrices can then be
determined as

P̃a
l[ ] �

K 2 1( )
r

I 1 Y
f
l[ ]

( )T
R21

l[ ] Y
f
l[ ]

[ ]21

, Wa
l[ ] � K 2 1( )P̃a

l[ ]
[ ]1=2

,

(6)

where K is the ensemble size, r is the multiplicative covari-
ance inflation factor, and is held fixed at r = 1.0 throughout
this work. The mean ensemble weight vector is derived as

wa
l[ ] � P̃a

l[ ] Y
f
l[ ]

( )T
R21

l[ ] yol[ ] 2 y
f
l[ ]

( )
: (7)

The analysis ensemble members are calculated using
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xa k( )
l[ ] � x

f
l[ ] 1 X

f
l[ ]w

a k( )
l[ ] , (8)

where superscript k is the index for the ensemble member

and wa k( )
l[ ]

{ }
is determined by columns of a resulting matrix by

adding wa
l[ ] to each column ofWa

l[ ].

3. Forecast model and observations

a. Model description

MOM6 is the latest generation ocean model developed by
the Geophysical Fluid Dynamics Laboratory (GFDL). Major
improvements over previous versions include the general-coordi-
nate formation, conservative representation of wetting and dry-
ing, and the novel parameterization of subgrid scale physics
(Griffes et al. 2015). The ocean model source code is taken from
the open source project MOM6 (git@github.com:NOAA-GFDL/
MOM6.git), which is a collaborative software development
project for a generalized finite volume representation of the
ocean suitable for short-term to climate scale study (Adcroft et al.
2019). An online parallel memory Lagrangian tracking algorithm
was used to simulate observed drifter trajectories. Lateral open
boundary conditions at the open edges of the model domain are
handled by incorporating barotropic (Flather and Heaps 1975)
and baroclinic (Orlanski 1976) radiation schemes.

The model domain is defined in a region extending
188–30.58N and 2628–279.58E using spherical coordinates. Two
primary horizontal resolutions are tested: an eddy-permitting
configuration of 1/48 (roughly 24 km) and an eddy-resolving
configuration of 1/128 (roughly 8 km). The horizontal grid and
the bathymetry are generated by interpolating from the
gridded bathymetric dataset of General Bathymetric Chart of
the Oceans (GEBCO). We apply the same 1/48 bathymetry
file for both horizontal grid resolutions in order to more
cleanly assess the impact of increasing ocean resolution by
not simultaneously changing the bathymetric representation.
A total of 75 levels defined with z* coordinates are used in the
vertical with 2–3-m resolution in the top 50 m. The ocean
model integration step is chosen as 150 s. Ensemble surface
atmospheric forcing is provided by the twentieth century
Reanalysis version 3 (20CRv3) for surface winds, tempera-
ture, specific heat, precipitation, pressure and downward
shortwave and longwave radiation with an updating fre-
quency of 3 h (Slivinski et al. 2019). The forcing for each
ocean ensemble member is selected from a corresponding
member forcing within the 80-member 20CRv3 ensemble
dataset. The open boundary conditions (OBC) for the eastern
and southern boundaries are determined by the Simple Ocean
Data Assimilation version 3.4.2 (SODAv3.4.2; Carton et al.
2018a,b) updated monthly, and are identical for all ensemble
members.

b. Grand Lagrangian Deployment and World Ocean
Database 2018

During the summer of 2012, the Consortium for Advance
Research on Transport of Hydrocarbon in the Environment
(CARTHE) conducted experiments of the Grand Lagrangian

Deployment (GLAD) by deploying 297 CODE-type surface
drifters (centered at a depth of one meter) tracked in real
time using SPOT GPS units. Drifters in the GLAD program,
without any temperature or salinity sensors attached, were
gradually launched starting on 20 July 2012 and drifted with
the surface ocean currents through 22 October 2012. Both the
launching and terminating processes were completed over a
span of multiple days.

In this work, we use the publicly available dataset produced
by the GLAD experiments generated by Özgökmen (2013).
The data were processed using a fourth-order Butterworth
low-pass filter with subsampling at uniform 15-min intervals.
The instantaneous drifter position entries are assimilated
using the augmented-state LaDA, while the corresponding
derived velocity entries are assimilated using the Eulerian
approach as a comparison. These derived velocities were
approximated using the average rates of changing displace-
ment within the 15-min intervals. Figure 1a shows the GPS
drifter positions on 1 August 2012, when the launching pro-
cess for all the drifters was already completed.

In situ temperature and salinity profile observations that
are available in the GoM during the examination period are
provided by the World Ocean Database 2018 (WOD18)
(Fig. 1c). This dataset contains measurements collected from
profiling float (PFL), expendable bathythermographs (XBT),
conductivity–temperature–depth probes (CTD), ocean station
data (OSD), gliders (GLD) etc. Data entries are flagged in
the original WOD18 if they fail quality control checks (Garcia
et al. 2018). In this study, all observations marked with a nega-
tive quality control flag (e.g., failing annual/seasonal/monthly
standard deviation check) are withheld from the analysis in
order to avoid negative impacts caused by outlier measure-
ments. Sun and Penny (2019) indicated strong correlations in
the error statistics of sea surface height (SSH) and simulated
drifter positions in an idealized model. To highlight the
impact of drifter measurements on ocean currents, no meas-
urements related to SSH are assimilated in any of the DA
approaches within this work. The joint assimilation of SSH
and surface drifter measurements remains an open research
problem.

4. Experiment design

We select 0000 UTC 1 August–2359 UTC 29 September
2012 as the examination time period for this study, corre-
sponding with the period the GLAD field campaign was con-
ducted in the GoM. All subsequent times are reported as
coordinated universal time (UTC). Within this time period,
the loop current eddy has already been shed from the loop
current and is located near the central GoM (roughly at 278N,
2718E. Carrier et al. 2014; Coelho et al. 2015). Hurricane Isaac
crossed the GoM during 26–30 August with the category 1
intensity, producing winds above 25 m s21 and very high sur-
face drifter velocities above 2 m s21 (Coelho et al. 2015). As
shown in Fig. 1d, the average kinetic energy of the observing
drifters peaks during this time, inferring fast advective under-
lying surface currents driven by the strong wind of the hurri-
cane. The tropical cyclone additionally led to a sharp drop in
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the number of reporting drifters (Muscarella et al. 2015) and
there are 132 drifters remaining at the end of the examination
period (see Fig. 1b).

To produce a reasonable set of initial conditions for the
ocean ensemble at 0000 UTC 1 August 2012 for different
forecast systems (i.e., 1/48 and 1/128) correspondingly, an
ensemble spinup procedure was conducted from the begin-
ning of January to the end of July (0000 UTC 1 January–2359
UTC 31 July). Ensemble members (1–30) at 1/48 resolution
were initialized uniformly with the potential temperature and
salinity from SODAv3.4.2 at 0000 UTC 1 Jan 2012 and
embedded with the same prescribed OBC as indicated in the
previous section. Each member (No. 1–30) is forced with the

corresponding ensemble member of the atmospheric forcing
from the 20CRv3 (No. 1–30), and is integrated for 7 months
from 0000 UTC 1 January to 2359 UTC 31 July, when the
ensemble spread appears fully saturated. For the spinup
process of the ensemble at 1/128 horizontal resolution, the cor-
responding ensemble models are initialized with the interpo-
lated 1/48 ensemble at 0000 UTC 1 July 2012 instead of the
potential temperature and salinity from SODAv3.4.2 at 0000
UTC 1 January 2012. Similar to the spinup process of 1/48, the
ensemble members at 1/128 resolution are integrated using
the ensemble atmospheric forcing from the 20CRv3 and the
same OBC until 2359 UTC 31 July before the initiation of the
DA experiments.

(a) (b)

(d)

(c)

FIG. 1. (a) 297 drifter GPS locations recorded in GLAD database on 1 Aug 2012. (b) 132 drifter trajectories that are
present for the entire examination period. (c) Locations of PRL, XBT, CTD, OSD, and GLD from 1 Aug to 29 Sep
2012 (observations plotted at a daily interval). The red box highlights the region for the computation of RMSEs.
(d) Time variation of average kinetic energy among all the observing drifters.
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The LETKF/LETKF-LaDA algorithms are used for all the
DA runs, using an ensemble size of 30 members (i.e., K = 30).
All DA experiments use 6-h assimilation windows through
the study period. The choice of a 6-h DA window is deter-
mined by examining a quasi-linear growth trend of the simu-
lated ensemble spread in SSH, sea surface temperature (SST),
and drifter position (longitude/latitude) within the first 24-h
forecast model run (see Fig. 2), to avoid the underfitting issue.
The horizontal localization radius is set initially at double the
size of the Rossby radius of deformation (Chelton et al. 1998)
for both the profile and the surface drifter measurements.
Each observation is assigned a spatiotemporally static esti-
mated error. The estimated errors are set at 2.08C for temper-
ature, 1.0 psu for salinity, 0.088 longitude/latitude for surface
drifter positions, and 0.08 m s21 in “proxy” drifter zonal/
meridional velocity. To reduce the effects of nonlinear error
growth and prevent additional analysis drifter bias from
influencing the DA performance (Salman 2008a,b), the initial
drifter positions at the beginning of each 6-h time window are
relocated by using the observed drifter positions, and the fore-
cast ensemble drifter positions are generated by integrating
the analysis flow ensemble at the end of previous DA step.

For both the eddy-permitting 1/48 and eddy-resolving 1/128
model configurations, three DA experiments are conducted
and compared with a free model integration (denoted as
FREE): 1) assimilating only the in situ temperature and salin-
ity profile measurements from WOD18 (denoted as PROF)
2) simultaneously assimilating both the in situ temperature
and salinity profile observations as well as the surface drifter
GPS locations (denoted as BOTH), and 3) simultaneously
assimilating both of the temperature and salinity profiles as
well as the derived drifter “proxy” Eulerian velocities (denoted
as BOTHvel). The free run is integrated using an identical fore-
cast model, but is forced with the prescribed mean atmosphere
forcing in 20CRv3 (among the total 80 members). A vertical
localization (denoted as VLOC) depending on the mixed layer
depth (MLD) is included and discussed in section 5c.

To highlight the impact of adding the assimilation of sur-
face drifter positions, the simultaneous assimilation of in situ
profiles and drifter positions (BOTH) is first compared with

the free model integration (FREE) and the assimilation of
only profile measurements (PROF) in section 5a. As a com-
parison between two main strategies of assimilating drifter
measurements, the assessments of DA experiments BOTH
(augmented-state approach) and BOTHvel (Eulerian approach)
are investigated in section 5b. Section 5c evaluates the influence
of adding the vertical localization to the assimilation of surface
drifter positions (VLOC) by comparing its results with those of
BOTH and PROF.

To evaluate the performance of the DA system, prior to
assimilating observations, the forecast fit to the observations
(also known as the innovation or departure) is examined at
each DA cycle by computing the root-mean-square error
(RMSE) between the forecast states and observations:

RMSE �
��������������������������
1
K

∑K

k�1
yo 2 Hx

f
k

( )2√√√
, (9)

where K is the ensemble size, xfk the kth forecast ensemble
member and H the global observation operator at the current
time step as defined in Eq. (4). All RMSEs are computed
within the region from 248 to 288N and from 2678 to 2758E
(Figs. 1a–c), where both the WOD18 and GLAD datasets
have more dense observations during the experiment period.

The skill score is then applied for evaluating the relative
RMSE of one experiment based on the RMSE of another ref-
erence experiment:

SS � 1:0 2
RMSE2

RMSE1
, (10)

where RMSE1 is computed for the reference experiment
(e.g., FREE) and RMSE2 is computed for the experiment of
interest (e.g., PROF, BOTH, etc.). If the experiment of inter-
est has lower RMSE than the reference experiment, the
skill score metric will be positive. On the other hand, the skill
metric will be negative as the experiment generates higher
RMSE than the reference experiment. If there is no signifi-
cant change, then the skill score value will be close to zero.
We first compare the performance of each DA experiment

(a) (b) (c)
!"
#$

#%
&
'$
()
*

!"
#$

#%
&
'$
()
*

+,)-$(./0&*+,)-$(./0&*

FIG. 2. The change of the spatially averaged ensemble spread for model states (a) SSH and (b) SST within the first 24-h forecast model
run in the 1/128 model resolution configuration. (c) The change of the averaged ensemble spread for all simulated drifter states within the
first 24 h.
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(e.g., PROF, BOTH) by using the skill score relative to FREE
run. The skill score of experiment BOTH relative to experiment
BOTHvel is then examined to emphasize the impacts of using
the augmented-state LaDA versus the Eulerian approach.

5. Results

a. Forecasts in eddy-permitting and eddy-resolving
systems

Using the 1/48 horizontal resolution eddy-permitting model
configuration, the assimilation experiments PROF and
BOTH produce improvements in temperature and salinity
compared with the FREE run (Figs. 3a,b and Table 1). Assim-
ilating only temperature and salinity profiles (PROF) results
in higher accuracy in estimates of subsurface temperature and
salinity after 13 days, compared to assimilating both profiles
and drifter positions (BOTH). [As shown in Figs. 13a,b and
Table 3, BOTH typically generates smaller forecast ensemble
spreads in temperature and salinity (i.e., 0.138C and 0.026
psu) than PROF (i.e., 0.178C and 0.036 psu) through adding
more observations to constrain the fluid states. As shown in
Table 3, the forecast ensemble spread of PROF in tempera-
ture is approximately one-seventh of the forecast RMSE,
while the one in salinity is about one-fifth of the RMSE. Like-
wise, the forecast ensemble spreads of BOTH in temperature
and salinity are approximately one-tenth of the corresponding

forecast RMSEs (see Table 3).] Assimilating the additional
drifter position measurements (BOTH) provides a more accu-
rate forecast of the ocean velocity states (Fig. 3c), compared
to assimilating only temperature and salinity profiles (PROF).
The time average velocity skill score of BOTH is 0.13, which
is much larger than the 0.02 skill score for the experiment of
assimilating only the temperature and salinity profiles (PROF).
This infers that BOTHmakes prominent improvements in fore-
casting the velocity than PROF.

The reduced forecast accuracy of temperature and salinity
in BOTH compared to the PROF experiment is apparent in
the vertical RMSE comparisons along different depth levels
(Fig. 4). Roughly below the MLD (approximately 150 m), the
assimilation of additional surface drifter observations results

(a)

(b)

(c)

FIG. 3. Time variation of the forecast skill score measured against free run solution (black
dashed line) in the 1/48 system for (a) temperature, (b) salinity, and (c) kinetic energy. Two DA
runs are shown: assimilation of temperature and salinity profiles (blue line, labeled as “PROF”),
and assimilation of temperature and salinity profiles and drifter positions (orange line, labeled as
“BOTH”). The RMSEs defining these skill scores are computed using the errors between fore-
cast states and observations at all heights/vertical levels. Valid from 1 Aug to 29 Sep 2012. The
gray shadows in all panels represent the time region for Hurricane Isaac (26–30 Aug 2012).

TABLE 1. The 95% confidence interval of RMSEs for
experiments in the 1/48 system. The statistics are computed from
the 240 sample forecast errors from 1 Aug to 29 Sep 2012. Each
entry is shown in the form of A 6 B, where A is the sample
mean and B is the standard error (B � 1:963 s=

�����
239

√
, with s

being the sample standard deviation).

FREE PROF BOTH VLOC

1/48 T (8C) 2.11 6 0.14 1.17 6 0.09 1.47 6 0.08 1.21 6 0.08
1/48 S (psu) 0.31 6 0.02 0.19 6 0.01 0.23 6 0.02 0.21 6 0.02
1/48 U/V

(m s21)
0.29 6 0.02 0.28 6 0.02 0.25 6 0.02 0.26 6 0.02
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in larger RMSEs than when assimilating only the temperature
and salinity profiles. Above the 150-m depth, PROF experi-
ment also slightly outperforms BOTH in salinity at most of
the depth levels. These results imply that while assimilating
Lagrangian drifter positions can enhance the estimation of

the synoptic surface velocity when using an eddy-permitting
model, additional steps must be taken to avoid degrading the
analysis derived from in situ profiles. Such additional steps
will be described in section 5c.

The number of observations needed to constrain a system
is related to the number of nonnegative Lyapunov exponents
in the system (e.g., Trevisan et al. 2010; Trevisan and Palatella
2011; Palatella 2013; Penny et al. 2019). When increasing the
horizontal resolution of the model from 1/48 to 1/128, the num-
ber of degrees of freedom for the whole system is increased.
Increasing the degrees of freedom of a model can potentially
increase the resolved instabilities and can affect the number
of nonnegative Lyapunov exponents of the system (e.g.,
De Cruz et al. 2018). Therefore, more observations may be
required to constrain the unstable error propagation for a
model system with high resolution. As shown in Fig. 5c, the
velocity skill score is constantly larger during the entire exam-
ination period when assimilating both drifter positions and
profiles (BOTH) than when assimilating only profiles
(PROF). The average velocity skill score of PROF is 20.07
due to its poor performance after 31 days, while adding the
assimilation of surface drifter positions provides an average
0.17 velocity skill score. This improvement of BOTH in esti-
mating the velocity over PROF in the eddy-resolving configu-
ration is more significant than in the eddy-permitting system
(see Table 1 and Table 2). This is probably because the 1/128
forecast model can resolve currents of eddy scale and provide
more reasonable ensemble uncertainty in all the fluid states
for the DA. The negative velocity skill scores of BOTH and

(a) (b)

FIG. 4. Vertical RMSEs averaged through the entire experiment
period (i.e., 60 days or DA cycles from 1 Aug to 29 Sep 2012) in
the 1/48 system for (a) temperature and (b) salinity for three experi-
ment cases: free run (black dashed line), assimilation of tempera-
ture and salinity profiles (blue line), and assimilation of tempera-
ture and salinity profiles and drifter positions (orange line).

(a)

(b)

(c)

FIG. 5. As in Fig. 3, but showing the skill scores but for the 1/128 horizontal resolution model
configuration. The RMSEs defining these skill scores are computed using the errors between
forecast states and observations at all heights/vertical levels. The gray shadows in all panels rep-
resent the time region for Hurricane Isaac (26–30 Aug 2012).
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PROF at the end of September may be caused by the dynamic
change of the surface flow after Hurricane Isaac. The analysis
generated by DA at 1/128 possibly introduces energy at
smaller scales (than the 1/48 analysis) that somehow becomes
problematic to the forecast as the hurricane passes over the
area.

Similarly to the eddy-permitting model configuration, the
temperature skill scores of the two DA experiments (i.e.,
BOTH and PROF) in the 1/128 eddy-resolving configuration
are comparable in the first 18 days. After 18 Aug, however,
adding the assimilation of surface drifter positions (BOTH)
again degrades the forecast of subsurface temperature com-
pared to PROF (Fig. 5a), which is statistically significant
according to the 95% confidence interval in Table 2. The
salinity skill scores for both of the DA experiments (i.e.,
BOTH and PROF) are comparable and are positive for most
of the DA cycles in the first 40 days (Fig. 5b), with the assimi-
lation of the temperature and salinity profiles (PROF) is
being marginally better when comparing their averages (i.e.,
0.39 for PROF and 0.36 for BOTH). After day 40 (i.e., 9 Sep),
PROF and BOTH oscillate in the salinity skill score relative
to FREE run. This oscillation is probably caused by a drastic
decay in the number of temperature and salinity profile obser-
vations around day 38, or 7 Sep (Fig. 6), making it harder for
the DA system with the high-resolution model to constrain
the error perturbation compared to the DA system using the
low-resolution model. Figure 7 presents the average vertical
RMSEs for the two DA experiments using the 1/128 model,
which shows a similar degradation of BOTH for the subsur-
face temperature and salinity as shown previously in the 1/48

eddy permitting model. Specifically, for temperature above
150-m depth, BOTH also demonstrates degradations as com-
pared with PROF in the 1/128 system, while the two DA
approaches do not have this obvious difference in the 1/48 sys-
tem as shown in Fig. 4a. Note again that this will be addressed
in section 5c. The forecast ensemble spreads of BOTH in tem-
perature and salinity (i.e., 0.208C and 0.045 psu) are much
smaller than PROF (i.e., 0.298C and 0.068; see Table 3,
Figs. 13d,e). The temperature and salinity RMSEs of BOTH
are respectively 6 and 5 times larger than the corresponding
temperature and salinity forecast ensemble spreads (see Table 3).
Meanwhile, Table 3 also demonstrates that the prior errors of
temperature and salinity in PROF are both 3 times greater than
the corresponding forecast ensemble spreads.

b. Comparison with the Eulerian approach

We next compare the LaDA approach (BOTH) with the
assimilation of derived Eulerian velocities (BOTHvel). As for
the synoptic surface ocean velocity fields, assimilation of the
drifter positions in the 1/48 eddy-permitting DA system pro-
vides better forecasts between 20 and 31 August 2012, though
it shows negative results for 64% of all DA cycles (see
Fig. 8c). Increasing the horizontal resolution improves the

TABLE 2. As in Table 1, but for experiments in the 1/128 system.

FREE PROF BOTH VLOC

1/128 T (8C) 2.10 6 0.15 0.93 6 0.11 1.29 6 0.10 0.92 6 0.10
1/128 S (psu) 0.31 6 0.02 0.20 6 0.03 0.21 6 0.02 0.20 6 0.02
1/128 U/V

(m s21)
0.31 6 0.02 0.32 6 0.02 0.24 6 0.01 0.28 6 0.02
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FIG. 6. The total number of different type profile observations
for (a) salinity and (b) temperature from 1 Aug to 29 Sep 2012 at
the Gulf of Mexico within the WOD18 database.

(a) (b)

FIG. 7. As in Fig. 4, but showing the vertical RMSE but for the
1/128 horizontal resolution model configuration.

TABLE 3. Time average of the forecast root-mean-square
errors and total ensemble spreads of forecasts in temperature
and salinity for PROF, BOTH, and VLOC at 1/48 and 1/128 DA
system.

T RMSE
(8C)

T ensemble
spread (8C)

S RMSE
(psu)

S ensemble
spread (psu)

PROF 1/48 1.17 0.17 0.19 0.036
BOTH 1/48 1.47 0.13 0.23 0.026
VLOC 1/48 1.21 0.15 0.21 0.030
PROF 1/128 0.93 0.29 0.20 0.068
BOTH 1/128 1.29 0.20 0.21 0.045
VLOC 1/128 0.92 0.29 0.20 0.067
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relative performance of forecasting ocean surface velocities
using LaDA through the entire experiment period (see
Fig. 9c), especially for the period from 15 to 31 August, as
LaDA reduces velocity RMSE by 18% compared to the
assimilation of derived Eulerian velocities. When applied to
the 1/128 eddy-resolving model, the LaDA provides a larger
improvement in the estimation of ocean surface velocity
fields. About 74% of all DA cycles (see Fig. 9f) outperform
the assimilation of derived Eulerian velocities, as compared
with 36% for the experiments using the 1/48 eddy-permitting
model (see Fig. 8f). It should be noted that the ocean surface
flow observed by the surface drifters moved faster during
19–31 Aug than those in other periods according to Fig. 1d.
Specifically, Hurricane Isaac (2012) entered the GoM at the
end of August 2012, which created a drastic change in the

ocean surface circulation. This implies that the estimation
error included in the observation error of the “proxy” Euler-
ian velocity cannot be ignored during extreme weather condi-
tions with fast advective surface flow. The augmented-state
LaDA shows a clear advantage in estimating the ocean sur-
face velocity within the regions characterized by fast ocean
currents, especially during the hurricane (i.e., 26–30 August
2012), though the observed GPS locations can still have mea-
surement errors.

The LaDA assimilation of drifter positions outperforms the
assimilation of derived Eulerian velocities when estimating 3D
ocean temperature fields at different horizontal resolutions
throughout the entire experiment period (Figs. 8a and 9a).
The improvements are mainly concentrated below approxi-
mately 60-m depth (Figs. 10a,c). When estimating 3D ocean

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 8. Time variation of the forecast skill score (SS) for the augmented-state LaDA (blue line, “both”) vs the Eulerian approach assimi-
lating “proxy” velocities from drifters (black dashed line) for (a) temperature, (b) salinity, and (c) surface kinetic energy for 1/48 horizontal
resolution model configuration. Valid from 1 Aug to 29 Sep 2012. Positive SS values indicate the LaDA is outperforming the proxy
approach. (d)–(f) Histograms showing the positivity/negativity of the corresponding SS values are summarized.

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 9. As in Fig. 8, but showing the skill score and its corresponding positivity/negativity histogram for the 1/128 horizontal resolution
model configuration.
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salinity, the LaDA forecasts fit the salinity observations better
than the Eulerian approach for almost all the DA cycles in the
1/48 (Fig. 8b), and for DA cycles before 9 September 2012 (or
day 40) in the 1/128 systems (Fig. 9b). The salinity skill score of
LaDA relative to the Eulerian approach oscillates in the 1/128
model after day 40 (Fig. 9b), though the LaDA outperforms in
81% of the experiment period (Fig. 9e). Further, the time
average of the salinity RMSE in the LaDA experiment is
lower than the Eulerian approach below 120-m depth for both
the 1/48 and 1/128 configurations (Figs. 10b,d). Since both the
Lagrangian and Eulerian approaches assimilate the same set
of temperature and salinity observations, the differences in the
errors of estimating the 3D temperature and salinity states
result from the differences in error covariances related to the
Lagrangian positions and the derived Eulerian velocities. This
discrepancy impacts the computation of the fluid analysis
ensemble spreads at each step, which then influences the for-
mation of the fluid forecast ensemble spread at the following
step. [As shown in Figs. 13a–e, there are faster degradations of
forecast ensemble spreads in temperature and salinity of
BOTHvel (Figs. 13a–e) than those of BOTH, which results in
the underestimated model error covariances in temperature
and salinity.]

c. Adding vertical localization

As previously mentioned in section 5a, assimilating sur-
face drifter positions in addition to temperature and salinity
profiles can degrade estimates of temperature and salinity
below the MLD and even some levels above the MLD. In
this section, we add a cutoff vertical localization to the
assimilation of drifter positions (denoted as VLOC), which
restricts the influence of surface drifter position observa-
tions to remain above the MLD, instead of the entire water
column as applied in section 5a and 5b. The cutoff MLD at
each time step is determined by using the ensemble mean

MLD and the corresponding vertical localization function is
shown as

f Dh( ) � 1, if Dh , MLD
0, if Dh$MLD

,
{

where Dh is the height difference between the forecast ocean
fluid states and the surface drifter observations. The MLD is
the mean MLD of all the forecast ensemble members. We
note that this vertical localization is only applied to the sur-
face drifter position observations, while the conventional
in situ temperature and salinity profiles still influence the
ocean state estimates for the entire water column. Within the
LETKF-LaDA algorithm, the mean MLD is checked at each
grid point and the surface drifter observations are assimilated
together with the in situ observations only for the grid points
above the mean MLD.

As compared with the experiments assimilating the sur-
face drifter positions and in situ profiles without any vertical
localization (BOTH), the additional application of vertical
localization (VLOC) largely enhances the estimation of
temperature and salinity below the MLD for all forecast
model resolutions (Figs. 11a–d and Tables 1 and 2) for both
the 1/48 and 1/128 systems. With the 1/48 model resolution,
adding the vertical localization (VLOC) does not generate
consistently lower errors in temperature or salinity than
assimilating only profile observations (PROF) below the
MLD (Figs. 11a,b). Using the 1/128 model resolution, the
combination of a vertically localized LaDA and conven-
tional assimilation of profiles (VLOC) results in the lowest
RMSEs for temperature and salinity at all levels below
MLD among all other examined DA experiments (including
PROF and BOTH) of the same forecast model resolution
(Figs. 11c,d), while the errors of VLOC are comparable
with PROF for temperature and salinity above MLD.

(a) (b) (c) (d)

FIG. 10. Vertical RMSEs averaged through the whole time period (i.e., 60 days or DA cycles from 1 Aug to 29 Sep 2012) for temperature
and salinity between experiments BOTH (blue line) and BOTHvel (black dashed line) in the 1/48 and 1/128 systems: (a) temperature
RMSEs in the 1/48 system, (b) salinity RMSEs in the 1/48 system, (c) temperature RMSEs in the 1/128 system, and (d) salinity RMSEs in
the 1/128 system.
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For both the 1/48 and 1/128 horizontal resolutions in Fig. 12,
adding the vertical localization (VLOC) provides less accu-
racy on estimating velocity fields than the one without vertical
localization (BOTH). In the meantime, VLOC outperforms
the assimilation of only profiles (PROF) in forecasting the
velocity field under the 1/48 framework up till 8 Sep. As
increasing the horizontal resolution to 1/128 system, the veloc-
ity fields generated by VLOC has better accuracy than the
ones by PROF, though both are worse than the assimilation
of profiles and Lagrangian drifter positions without any verti-
cal localization (BOTH). These degradations of VLOC and

PROF as compared with BOTH are statistically significant at
the 95% level as shown Table 2.

In the 1/48 system, adding vertical localization (VLOC)
generates forecast ensemble spread that is sandwiched
between those of PROF and BOTH for all the ocean
states (Figs. 13a–c, Table 3). Increasing the horizontal reso-
lution, the forecast ensemble spread of VLOC becomes
nearly as large as PROF during the whole examination time
period (Figs. 13d–f, Table 3). These implies that the vertical
localization on both the resolution systems can slow the
degradation of ensemble spreads for all ocean states, which

FIG. 12. Time variation of the forecast velocity skill score (SS) of VLOC and PROF measured
against BOTH (black dashed line) in the (a) 1/48 and (b) 1/128 system.

(a) (b) (c) (d)

FIG. 11. Vertical RMSEs averaged through the whole time period (i.e., 60 days or DA cycles from 1 Aug to 29 Sep 2012) comparing
experiments using vertical localization (VLOC; blue line) and without using vertical localization (BOTH; black dashed line). Assimilation
of profiles (PROF; orange line) is shown as a reference. (a) Temperature RMSEs in the 1/48 system, (b) salinity RMSEs in the 1/48 system,
(c) temperature RMSEs in the 1/128 system, and (d) salinity RMSEs in the 1/128 system.
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avoids the underestimation issue of forecast ensemble
spread.

d. Lagrangian predictability

In this section we consider the Lagrangian predictability
in DA experiments using models with different horizontal
resolutions. Two metrics are used to quantify the Lagrang-
ian predictability, which compare the GLAD trajectories
with simulated forecast trajectories within the analysis
flow fields (Muscarella et al. 2015). The separation distance
is the geophysical distance (in kilometers) between the
positions of the observed and simulated drifters at a speci-
fied time:

Ds � 1
LD

∑LD

m�1
d lom, w

o
m

( )
, l

f
m, w

f
m

( )[ ]
, (11)

where lom, w
o
m

( )
is the observed GPS location of the mth

GLAD drifter, and l
f
m, w

f
m

( )
is the ensemble mean forecasted

location of the same drifter.
For both the eddy-permitting and eddy-resolving model

configurations (Fig. 14), the experiments assimilating addi-
tional surface drifter positions (BOTH and VLOC) produce
smaller separation distances than the experiment assimilating
only temperature and salinity profiles (PROF). The applica-
tion of vertical localization reduces the separation distances
compared to the experiments assimilating only profiles
(PROF) using both the 1/48 and 1/128 model configurations by
24% and 14%, respectively. Meanwhile, VLOC demonstrates
marginally less forecast accuracy in Lagrangian distances than
the assimilation of both profiles and drifter positions without
vertical localization (BOTH), which coincides with the results
of Fig. 12. In addition, for the experiment BOTH, increasing
the horizontal resolution alleviates a sudden increase of

(a) (b)

FIG. 14. Average separation distance (km) between the observed drifter position and the simulated drifter positions generated from experi-
ments PROF (blue), BOTH (orange), and VLOC (green) runs of horizontal resolutions in (a) 1/48 and (b) 1/128.

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 13. Time variation of forecast ensemble spreads for DA experiments PROF (blue), BOTH (orange), BOTHvel (green), and
VLOC (red): (a) temperature in the 1/48 system, (b) salinity in the 1/48 system, (c) velocity in the 1/48 system, (d) temperature in the 1/128
system, (e) salinity in the 1/128 system, and (f) velocity in the 1/128 system.
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separation distance on 28 Aug. 2012 while Hurricane Isaac
(2012) was passing through the GoM.

The angular difference is used to determined possible direc-
tion biases along the drifter path:

Dum � cos21 v
f
m · vom

‖vfm‖‖vom‖

( )
, m � 1, 2,…,LD, (12)

where v
f
m and vom are vectors originating from the same initial

location at the observed positions from the previous time
step, and terminating at the corresponding forecasted and
observed positions, respectively.

As the angular difference ranges from 08 to 1808, we evenly
divide the range into 12 bins and consider the time variation of
the occurrence frequency for each bin during the whole DA
process. Figure 15 shows the occurrence frequency (in percent-
age) of angular differences throughout all of the experiments
that fall within a given time range. On average more than 50%
of angular differences fall within the bins for small angular dif-
ferences (less than or equal to 458) in BOTH and VLOC for
different horizontal resolutions (i.e., 53% in 1/48 BOTH, 57%
in 1/128 BOTH, 50% in 1/48 VLOC and 51% in 1/128 VLOC),
compared with 36% and 35% in the PROF experiments. For
experiments assimilating only profiles (PROF), the angular
differences are widely distributed in different angle bins, in
which obtuse angles (greater than 908) occupy a relatively
larger percentage than BOTH and VLOC during the experi-
ment period. This implies that the BOTH and VLOC experi-
ments at different resolutions provide more accuracy in
estimating the true flow direction at the ocean surface.

6. Discussion and outlook

An application of the augmented-state Lagrangian data
assimilation (LaDA) using LETKF (LETKF-LaDA; Sun and
Penny 2019) within a realistic ocean DA framework has been
investigated for the Gulf of Mexico. We assimilated historical
data, including in situ temperature and salinity profiles from
the WOD18 as well as surface drifter positions and derived
velocities from the GLAD field experiment. We investigated
the impacts of LaDA on two types forecast models: 1) an
eddy-permitting ocean model with 1/48 horizontal resolution,
and 2) an eddy-resolving ocean model with 1/128 horizontal
resolution. Compared with assimilating only conventional in
situ temperature and salinity profiles, the additional LaDA of
surface drifter position measurements improved estimates of
the synoptic ocean surface velocity at different horizontal
resolutions. The advantage of LaDA was particularly notable
while Hurricane Isaac (2012) impacted the GoM (26–30 August).
In this case, assimilating surface drifter positions using LaDA
led to greater accuracy than assimilating derived Eulerian
velocity measurements in the estimation of temperature and
salinity fields ranging from the surface to the deep layers. It is
also shown that LaDA has greater advantages in characteriz-
ing the velocity fields of the fast advective ocean currents than
the Eulerian approach. This improved accuracy was amplified
as the horizontal model resolution was increased from 1/48 to
1/128. As there is a growing interest in better resolving ocean
surface currents to improve the forecast of tropical cyclones
(e.g., Li and Toumi 2018; Zhang and Emanuel 2018; Chen and
Zhang 2019; Phillipson et al. 2021), this suggests a potential

PROF BOTH VLOC

1/4o

1/12o

(a) (b) (c)

(d) (e) (f)

FIG. 15. Comparisons of the occurrence frequency for angle differences in percentage for experiments: (a),(d) PROF; (b),(e) BOTH;
and (c),(f) VLOC of horizontal resolution (top) 1/48 and (bottom) 1/128 (the occurrence frequency are averaged daily). Within every panel,
each column of pixels shows a distribution of the angle differences between the observed and the simulated drifter moving direction. The
cases assimilating the additional surface drifter positions (BOTH and VLOC) show more instances of simulated drifters aligning with
observed drifter trajectories.

MONTHLY WEATHER REV I EW VOLUME 150962

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 06:25 PM UTC



use for the augmented-state LaDA in applications of the
extreme weather conditions like tropical cyclones.

As for the estimation of the synoptic temperature and salin-
ity fields, the additional assimilation of surface drifter posi-
tions can degrade RMSEs below the mixed layer depth,
compared to assimilating only in situ temperature and salinity
profiles. This degradation was eliminated by applying a verti-
cal localization to the assimilation of surface drifter positions,
thus recovering similar accuracy below the mixed layer depth.
Using the 1/128 model resolution with a combination of verti-
cally localized LaDA of drifter positions and conventional
assimilation of temperature and salinity profiles resulted in
the most accurate estimates of temperature and salinity below
mixed layer depth. In addition, experiments using LaDA
resulted in substantially improved predictability of drifter tra-
jectories compared to experiments assimilating only in situ
profiles.

As a first study on the realistic application of the LETKF-
LaDA, we focused on the potential benefits of adding the
assimilation of surface drifter positions measured with GPS
sensors to a conventional assimilation of in situ temperature
and salinity profile observations. Because of the limited
experiment duration of GLAD, we were unable to examine
the LETKF-LaDA for an extended period. Future efforts will
investigate the performance of LETKF-LaDA for a long
duration experiment scenario and will include the assimilation
of additional observational datasets such as satellite SST,
altimeter data, and Global Drifter Program surface drifters
equipped with temperature and salinity sensors. Due to the
limitation that GLAD drifter observations only cover a par-
tial region of the GoM, we only discuss the improvement at
the center of the GoM, which cannot cover the whole Loop
Current system. As the deploying range of surface drifters is
enlarged in the future, the impacts of LaDA on the estimation
of surface currents in Loop Current and transporting water
mass from straits of Florida and Yucatan Current can be fur-
ther investigated.
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